/resources/image/template/step.png Traceability

Traceability

Traceability is the ability to verify the history, location, or application of an item by means of documented recorded identification.

Other common definitions include the capability (and implementation) of keeping track of a given set or type of information to a given degree, or the ability to chronologically interrelate uniquely identifiable entities in a way that is verifiable.

Measurement

The term "measurement traceability" is used to refer to an unbroken chain of comparisons relating an instrument's measurements to a known standard. Calibration to a traceable standard can be used to determine an instrument's bias, precision, and accuracy. It may also be used to show a chain of custody - from current interpretation of evidence to the actual evidence in a legal context, or history of handling of any information.

In many countries, national standards for weights and measures are maintained by a National Measurement Institute (NMI) which provides the highest level of standards for the calibration / measurement traceability infrastructure in that country. Examples of government agencies include the National Physical Laboratory, UK (NPL) the National Institute of Standards and Technology (NIST) in the USA, the Physikalisch - Technische Bundesanstalt (PTB) in Germany, and the Istituto Nazionale di Ricerca Metrologica (INRiM) in Italy. As defined by NIST, "Traceability of measurement requires the establishment of an unbroken chain of comparisons to stated references each with a stated uncertainty."

Logistics

In logistics, traceability refers to the capability for tracing goods along the distribution chain on a batch number or series number basis. Traceability is an important aspect for example in the automotive industry, where it makes recalls possible, or in the food industry where it contributes to food safety.

The international standards organization EPC global under GS1 has ratified the EPC global Network standards (especially the EPC Information Services EPCIS standard) which codify the syntax and semantics for supply chain events and the secure method for selectively sharing supply chain events with trading partners. These standards for traceability have been used in successful deployments in many industries and there are now a wide range of products that are certified as being compatible with these standards.

Material

In regard to materials, traceability refers to the capability to associate a finished part with destructive test results performed on material from the same ingot with the same heat treatment, or to associate a finished part with results of a test performed on a sample from the same melt identified by the unique lot number of the material. Destructive tests typically include chemical composition and mechanical strength tests. A heat number is usually marked on the part or raw material which identifies the ingot it came from, and a lot number may identify the group of parts that experienced the same heat treatment (i.e., were in the same oven at the same time). Material traceability is important to the aerospace, nuclear, and process industry because they frequently make use of high strength materials that look identical to commercial low strength versions. In these industries, a part made of the wrong material is called "counterfeit," even if the substitution was accidental.

Supply Chain

In the supply chain, traceability is more of an ethical or environmental issue. Environmentally friendly retailers may choose to make information regarding their supply chain freely available to customers, illustrating the fact that the products they sell are manufactured in factories with safe working conditions, by workers that earn a fair wage, using methods that do not damage the environment.

Software Development

In software development; the term traceability (or Requirements Traceability) refers to the ability to link product requirements back to stakeholders' rationales and forward to corresponding design artifacts, code, and test cases. Traceability supports numerous software engineering activities such as change impact analysis, compliance verification or trace back of code, regression test selection, and requirements validation. It is usually accomplished in the form of a matrix created for the verification and validation of the project. Unfortunately the practice of constructing and maintaining a requirements trace matrix (RTM) can be very arduous and over time the traces tend to erode into an inaccurate state unless date/time stamped. Alternate automated approaches for generating traces using information retrieval methods have been developed.

In transaction processing software, traceability implies use of a unique piece of data (e.g., order date/time or a serialized sequence number) which can be traced through the entire software flow of all relevant application programs. Messages and files at any point in the system can then be audited for correctness and completeness, using the traceability key to find the particular transaction. This is also sometimes referred to as the transaction footprint.



Sub Menu
Latest

Jul 10, 2017 7:31:01 AM

Jun 30, 2017 5:45:40 AM

Jun 19, 2017 7:46:16 AM

Jun 19, 2017 5:29:38 AM

Jun 14, 2017 9:14:20 AM

Copyright 2009 Geto Custom electronics applciations. All rights reserved. Contact us: info@geto.com.gr